Binary math

Published

September 22, 2025

Modified

September 30, 2025

Question 1

Perform the following binary additions: 1. 101 + 11 = 2. 111 + 111 = 3. 1010 + 1010 = 4. 11101 + 1010 = 5. 11111 + 11111 =

  1. 1000
  2. 1110
  3. 10100
  4. 100111
  5. 111110

Question 2

Convert the following numbers to binary and perform the operation: 1. (32)10 = 2. (50)10 + (32)10 =  3. (64)10 + (4)10 = 4. (100)10 + (220)10 =

  1. 100000
  2. 1010010
  3. 1000100
  4. 101000000

Question 3

Given the codebook below, write the binary instructions to perform this operation: (100)10 + (220)10 . - What’s the final value on the External Data Bus?

  1. 1000 0000
  2. 0110 1110
  3. 1001 0000
  4. 1101 1100
  5. 1011 0000
  6. 1100 0000

1101110 + 11011100 = 101000000, but since the CPU’s bus size is limited to 8 bits, the most significant bit (left most, or highest power) will be lost. The final answer on the ESD is 01000000 (64).

Question 4

What is -230 in two’s complement represetation with an 12 bits bus width?

  1. Write 230 in binary: 1 0100 0000
  2. Complete the number of bits to 12 and add a bit for the sign: __0__0001 0100 0000
  3. Flip the bits (one’s complement): __1__1110 1011 1111
  4. Add 1 to get two’s complement: __1__1110 1100 0000

Question 5

Convert the following numbers to binary and perform the operation on an 8-bit CPU: 1. (50)10 - (32)10 =  2. (64)10 - (4)10 = 3. (100)10 - (120)10 =

  1. (50)10 - (32)10 = (50)10 + (-32)10 Binary 50: 0011 0010 Binary 32: 0010 0000 Invert 32: 1101 1111 Add 1: 1110 0000 Operation: 50-32 : 0011 0010
  • 1110 0000

    0001 0010
  1. (64)10 - (4)10 = (64)10 + (-4)10 Binary 64: 0100 0000 Binary 4: 0000 0100 Invert 4: 1111 1011 Add 1: 1111 1100 Operation 64 - 4: 0100 0000
  • 1111 1100

    0011 1100
  1. Binary 100: 0110 0100 Binary 120: 0111 1000 Invert 120: 1000 0111 Add 1: 1000 1000 Operation: 100 - 120: 0110 0100
  • 1000 1000
    1110 1100 (-20)
Back to top